Self-Consistent Solution of the Schrodinger and Poisson Equations Applied to Quantum Well Heterostructures
نویسندگان
چکیده
A novel numerical approach to solving Schr odinger's equation as applied to quantum well heterostructures is described. The quantum mechanical energy subbands, wave functions and charge density are calculated based on a two-directional fourthorder Runge-Kutta (RK4) algorithm. The algorithm is applied to well-de ned quantum well structures. Results are compared with analytic solutions to ensure numerical accuracy. The approach is then extended to a self-consistent solution of the Schrodinger and Poisson equations applied to a Si/Si1 xGex/Si heterostructure. The advantages of this method are compared to other solution techniques.
منابع مشابه
Time-dependent analysis of carrier density and potential energy in spherical centered defect InGaAs/AlGaAs quantum dot (SCDQD)
Interaction and correlation effects in quantum dots play a fundamental role in defining both their equilibrium and transport properties. Numerical methods are commonly employed to study such systems. In this paper we investigate the numerical calculation of quantum transport of electrons in spherical centered defect InGaAs/AlGaAs quantum dot (SCDQD). The simulation is based on the imaginary time...
متن کاملTime-dependent analysis of carrier density and potential energy in spherical centered defect InGaAs/AlGaAs quantum dot (SCDQD)
Interaction and correlation effects in quantum dots play a fundamental role in defining both their equilibrium and transport properties. Numerical methods are commonly employed to study such systems. In this paper we investigate the numerical calculation of quantum transport of electrons in spherical centered defect InGaAs/AlGaAs quantum dot (SCDQD). The simulation is based on the imaginary time...
متن کاملSemiconductor Device Simulation by a New Method of Solving Poisson, Laplace and Schrodinger Equations (RESEARCH NOTE)
In this paper, we have extended and completed our previous work, that was introducing a new method for finite differentiation. We show the applicability of the method for solving a wide variety of equations such as Poisson, Lap lace and Schrodinger. These equations are fundamental to the most semiconductor device simulators. In a section, we solve the Shordinger equation by this method in sever...
متن کامل2D Simulation Models for Quantum Mechanical Effects
ductor devices. A self consistent Schrodinger – Poisson solver allows calculation of bound state energies and associated carrier wave functions self consistently with electrostatic potential. Schrodinger solvers can be combined with Non-equilibrium Green’s Function (NEGF) Approach in order to model ballistic quantum transport in 2D or cylindrical devices with strong transverse confinement. An a...
متن کاملSolution and stability analysis of coupled nonlinear Schrodinger equations
We consider a new type of integrable coupled nonlinear Schrodinger (CNLS)equations proposed by our self [submitted to Phys. Plasmas (2011)]. The explicitform of soliton solutions are derived using the Hirota's bilinear method.We show that the parameters in the CNLS equations only determine the regionsfor the existence of bright and dark soliton solutions. Finally, throughthe linear stability an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1998